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ABSTRACT 

The paper presents a methodology for an a posteriori identification of impact

characteristics and its development. The motivation of the paper is the need for a

general post-impact analysis technique for efficient identification of the cause and

the scenario of a collision or a collapse. The proposed approach can be applied in a

black box type systems for an accurate post-accident diagnosis [1, 2].

The methodology is based on analysis of local accelerations/strains developing

during the impact, includes both elastic and elasto-plastic structural behaviour and

can be reformulated to cover other general non-linear effects. It is fully applicable to

all impact-exposed engineering structures, provided a dedicated sensors system is

distributed in the structure to measure and store local response.

The  identification  itself  is  treated  as  an  inverse  problem and  thanks  to  the

Virtual Distortion Method (VDM) [3] can be formulated analytically as a complex

optimisation  problem:  find  the  impact  scenario  that  minimises  the  mean-square

distance between simulated and measured dynamic responses in sensor locations.

The significant computational effort of the problem is drastically reduced by the

VDM approach, which makes possible an analytical sensitivity analysis and does

not require actualisation of the global  stiffness matrix in the plastic yield phase.

Compared  to  other  researches  [4, 5, 6]  this  formulation  comprises  simultaneous

multiple impact and moving loads cases. Additionally, the paper proposes robust

hybrid algorithms combining heuristic and gradient-based optimisation techniques,

illustrated in a numerical example. A similar approach has been used in parallel

research on structural adaptation to impact loads [7].

VDM: STRUCTURAL DYNAMIC RESPONSE

The methodology is based on the Virtual Distortion Method (VDM), and is thus

restricted  to  small  deformation  case.  Dynamics  of  an  elasto-plastic  structure  is

described  in  terms of  so-called  dynamic (or  impulse)  influence  matrices,  which
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store structural response to local impulse excitations of Dirac type and can be either

generated  from a  numerical  model  or  measured  experimentally,  the  latter  being

potentially more practical in case of real-world complex structures. The measurands

can include local displacements and strains, which are easily measured with piezo

transducers. Accelerations are also feasible, provided the response is discretised.

The load identification procedure relies on the provided matrices only, and as

they retain full information about the modelled structure (including the boundary

conditions) there is no need for additional modelling. Therefore, although this paper

deals with modelled trusses, the concept is applicable to all types of structures.

Displacements and strains

The approach discretises the considered time interval into a finite number of

time steps, which are denoted further on by t and τ. The displacement ui(t) in the i-th

degree of freedom (DOF) of the analysed structure is a linear combination of the

responses to all previous loading forces pn(τ) (occurring in DOFs n∈L) and plastic

distortions (occurring in plastified elements ξ∈Ξ), and can be expressed as follows:

u it=∑
τ=0

t

∑
n∈L

Di n

P t�τ pnτ ∑
τ=0

t

∑
ξ∈Ξ

Di ξ

ε t�τ  βξ τ . (1)

The Latin indices in Eq. (1) and thorough the paper denote degrees of freedom

(DOFs), while the Greek indices are reserved for truss elements. The matrices  DP

and  Dε are  the  above-mentioned  dynamic  influence  matrices  and  describe  the

discretised  dynamic  response  of  the  structure  (displacements)  to  a  unit  impulse

force and a unit plastic distortion applied in time step 0.  All measurands being a

linear combination of the displacements can be represented in a similar way. As an

example, the corresponding strain evolution  εα(t) can be represented using the so-

called strain-displacement matrix G, which relates displacements to strain field.

εα t =∑
i=1

N

Gαiui t=∑
τ=0

t

∑
n∈L

Bα n

P t�τ  pn τ∑
τ=0

t

∑
ξ∈Ξ

Bαξ

ε t�τ  βξ  τ. (2)

The dynamic influence matrices BP and Bε describe the strain evolution in time

and can be either calculated or directly measured, e.g. with piezo transducers.

The  elasto-plastic  physical  properties  are  described  by  a  piecewise  linear

relation. The stress σα(t) in a plastified element α in time t can be expressed in terms

of the current value of the plastic distortion  βα(t) as well as in terms of the yield

level σ* = Eα ε* and the hardening coefficient γα

σα t =Eα [ εαt �βαt ] ,          σα t ∓σ
x=Eα γα [εαt ∓εα

x ] , (3)

where the sign depends on the stress sign. Combined together they yield 

βαt =1�γα[εαt ∓εα
x ] , (4)
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where the strain  εα(t) is  expressed by Eq. (2).  Eq. (4) rewritten for  all  plastified

elements α can be transformed into a set of linear equations in unknowns βα(t) and

solved, time step by time step. Moreover, if the elements of the matrices BP and Bε

vanish in time step 0, the distortion βα(t) occurs only on the left hand side and thus

can be directly computed in each time step, if the yield stress level is exceeded.

Accelerations

The nodal velocities can be expressed by direct differentiation of Eq. (1). In an

obvious analogy to a continuous-time system

u̇ it=
1

∆t
∑
n∈L

Di n

P 0 pnt
1

∆t
∑
n∈L

Di ξ

ε 0 βξ t 

∑
τ=0

t

∑
n∈L

Ḋi n

P t�τ  pn τ∑
τ=0

t

∑
ξ∈Ξ

Ḋi ξ

ε t�τ βξ τ .
(5)

A  further  differentiation  would  result  in  two  troublesome  components:  the

derivatives of the acting force ∂pn(t)/∂t and of the plastic distortion ∂βα(t)/∂t. A more

convenient  formula  can  be  obtained  by mixing the  VDM formulation  with  the

Newmark's  integration scheme [8].  In  each time step the displacements  and the

velocities  can  be  calculated  using  the  formulae  Eq. (1)  and  Eq. (5),  but  the

accelerations using the Newmark's constant integration parameters a0, a2 and a3:

ü it=a0[u it �ui t�1]�a2u̇ it�1�a3 üi t�1 . (6)

Therefore, if the discretised response is considered, the acceleration  ü nt  is by

Eq. (6), Eq. (5) and Eq. (1) a linear combination of acting forces  pn(τ) and plastic

distortions  βα(τ),  the  combination  coefficients  can  be  calculated  iteratively  and

expressed in a way similar to Eq. (1):

ü it=∑
τ=0

t

∑
n∈L

Ai n

P t�τ  pn τ∑
τ=0

t

∑
ξ∈Ξ

Ai ξ

ε t�τ  βξ  τ. (7)

VDM: IMPACT FORCE RECONSTRUCTION

The identification task is formulated as an inverse problem and amounts to the

minimisation of the objective function, which is a weighted sum of the mean-square

distances between measured and modelled strains and accelerations.

Objective function

The identification aim is to determine the time evolution of the loading forces

pn(t) that minimises the discrepancy between the measured and calculated structural

behaviour. As both local strains and accelerations can be relatively easily measured,

the objective function is composed of two weighted terms:
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f  p =
∑
t=0

T

∑
α∈Σ

[εαM t�εα t]
2

∑
t=0

T

∑
α∈Σ

[εαM t ]
2


∑
t=0

T

∑
i∈A

[ü i

M t � üit]
2

∑
t=0

T

∑
i∈A

[ üi

M t ]
2

. (8)

Both terms represent  scaled mean-square distances:  the first  between locally

measured and calculated strains, while the second between locally measured and

calculated accelerations. The weighting denominators are necessary to balance the

influence of both components. The set of elements with strain gauges is denoted

by Σ, A denotes the the set of nodes with accelerometers.

Gradients

At the current stage of the research calculations of the gradient in the plastic

case would involve a huge number of O(T 
3) components, where T is the number of

time steps. Therefore, this paper is limited to the case of elastic structures only.

The derivative of the objective function  f with respect to each unknown force
pn τ  can be expressed in terms of the corresponding derivatives of εαt  and ü it :

∂ f  p

∂ pnτ 
=�2[∑

t=0

T

∑
α∈Σ

[εαM t]
2]

�1

∑
t=0

T

∑
α∈Σ

[εαM t �εαt ]
∂εα t 

∂ pn τ

�2[∑
t=0

T

∑
i∈A

[ üi

M t]
2]

�1

∑
t=0

T

∑
i∈A

[ üi

M t �üi t]
∂ ü it

∂ pnτ 
,

(9)

which in the elastic case (βα τ ≡0) are easily calculated by Eq. (2) and Eq. (7)

∂ εαt 

∂ pnτ 
=Bαn

P t�τ⋅1{τt } ,          
∂ ü it 

∂ pnτ 
=Aαn

P t�τ ⋅1{τt } . (10)

EFFICIENT OPTIMISATION ALGORITHM

Force reconstruction is not straightforward due to the large number of unknowns

pn(τ) (number of time steps x number of optimised DOFs, 3,200 in the numerical

example considered below). Nevertheless, a thorough analysis of the form of the

objective function leads to an efficient optimisation procedure [9]. Further speed-up

can be achieved by representing the space-time (i.e. n-τ) distribution of acting forces

pn(τ) in the form of a linear combination of normalised atomic distributions:

pnτ =∑
m ,κ

cm, κ⋅hm, κ n , τ ,          ∀
m, κ [∑n ,τ hm ,κ n , τ =1]. (11)

The general accurate case is equivalent to the assumption  hm ,κ n , τ =1{n=m ,κ=τ }.

The derivatives of the objective function f with respect to the coefficients cm,κ can be

easily calculated by Eq. (2), Eq. (7), Eq. (9) and the chain rule.

4



Basic formulae

The calculated strains Eq. (2) and accelerations Eq. (7) are linear combinations

of the acting forces pn(τ) and hence of the coefficients cm,κ. Therefore, the objective

function f Eq. (8) is a convex quadratic function of cm,κ and can be exactly expanded

around a given coefficient vector c=<cm,κ>

f cd = f c∇∇∇∇ f cT d
1

2
d
T
H d , (12)

where H is the (constant, positive semidefinite) Hessian of f with respect to cm,κ. The

following formulae  can  be  derived  using Eq. (11),  Eq. (12)  and  the  linearity of

calculated strains and accelerations (Eq. (2), Eq. (7)):

∇∇∇∇ f cT d=�2C1∑
t=0

T

∑
α∈Σ

εα
d t  [εαM t �εα

ct ]�2C2∑
t=0

T

∑
i∈A

ü i

d  t [üi

M  t�üi

ct ] ,

d i

T
H d j=2C1∑

t=0

T

∑
α∈Σ

εα
dit ⋅εα

d jt2C2∑
t=0

T

∑
i∈A

üi

di t ⋅ü i

d j t  ,
(13)

where C1 and C2 denote the weighting coefficients (inverse of the denominators in

Eq. (8));  εα
ct ,  üi

c  t denote the strains and accelerations calculated with Eq. (2)

and Eq. (7) for the loading defined by the coefficient vector c=<cm,κ> and Eq. (11).

Line optimisation

Even for  simple structures  the Hessian occurring in  Eq. (12)  is  too  large  to

compute and invert it directly, which would be necessary to find the minimum in

one step only. Therefore, a series of line optimisations has to be performed; each

step amounts to finding at a given point c the line minimum along a direction d, i.e.

the value of  s that minimises  f(c+s·d), which is a convex quadratic function. The

summands in Eq. (12) can be directly calculated using the formulae Eq. (13). Thus

smin=�
∇∇∇∇ f cT d

d
T
H d

. (14)

Conjugate directions

The steepest descent method assumes d=�∇∇∇∇ f c  at each optimisation step, but

it  suffers  from  slow  convergence.  However,  the  objective  function  f is  an

unbounded quadratic form, hence choosing in each step a direction dn+1 conjugate

with all  previous directions d0, ...,  dn leads by Eq. (14) directly to the minimum in

the whole subspace generated by all considered directions. Therefore, starting with

the steepest descent direction and making use of the conjugacy criterion di
THdj = 0,

d n1=�∇∇∇∇ f cn1∑
i=0

n

ηi d i , where ηi=
∇∇∇∇ f cn1

T
H d i

d i
T
H d i

. (15)
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The algorithm

The most expensive in the algorithm below are the calculations of the gradient

and of the corresponding initial response. Moreover, at large step numbers  n, it is

faster to calculate the final response directly than to superpose the stored responses.

Initial calculations:
initialise: c0=0 and εα

c0t =0, ü
i

c0t =0

calculate d 0=�∇∇∇∇ f  p0 and εα
d 0t , ü

i

d 0t 

normalise: D=d0

T
H d

0
 and d 0=d 0/D, εα

d 0t =ε
α

d 0 t /D, ü
i

d 0t =ü
i

d 0t /D

calculate the line minimum s=�∇∇∇∇ f c0
T
d 0

store d 0 and εα
d 0t , ü

i

d 0t 

The loop:
update: cn1=cns⋅d n and εα

cn1t =εα
c

n

t s⋅εα

d
n

t , ü i

cn1t =ü i

c
n

t s⋅üi

d
n

t 

calculate d n1=�∇∇∇∇ f cn1 and εα
d n1t , ü i

d n1 t 
conjugate direction: for (i = 0; i <= n; ++i)

η=�d n1

T
H d i

d n1=d n1η⋅d i and εα
d n1t =εα

d n1 t η⋅εα
d

i

t , ü i

d n1 t =ü i

d n1 t η⋅üi

d
i

t 

normalise:

D=d n1

T
H d

n1
 and d n1=d n1/D,εα

d n1t =εα
d n1 t /D,ü i

d n1 t =ü i

d n1 t /D

calculate the line minimum s=�∇∇∇∇ f cn1
T
d n1

store d n1 and εα
d n1t , ü i

d n1 t 

NUMBER OF SENSORS AND FURTHER SPEED-UP

Several ideas to speed-up the optimisation process and reduce the number of

sensors  can  be  considered.  They  can  be  either  purely  numeric  or  can  rely  on

heuristics  derived  from engineering  common  sense  and/or  post-accident  on-site

inspection (number and size of impact areas, possible impact locations etc.).

The time complexity of each algorithm step is O(C S T 2), where C is the number

of distributions being superposed (coefficients cm,κ), S is the number of sensors and

T is the number of time steps. An obvious idea is to divide a long time interval into

several (not too short) subintervals and to perform the optimisation for each of them

separately, assuming the loading identified in the preceding subintervals is accurate.

Another idea can utilise the fact that impact is a short and localised event, hence

most  of  the acting forces and the coefficients  cm,κ are zero.  Thus,  to  reduce the

number of unknowns C the identification can be split into phases: initial phases use

a limited number of fuzzy atomic distributions (possibly including space search) to

identify impact areas, followed by phases of localised, more accurate identification.

Minimisation of the objective function  f corresponds to solving a large-scale

linear system. To guarantee the uniqueness of the solution the unknowns shall not

exceed in number the equations,  provided the system is not singular. Hence, the

number of distributions being superposed  C shall not exceed the total number of

measurements εα
M
t  and ü n

M
t  (time steps x the number of sensors). Otherwise there

would  exist  a  subspace  of  feasible  solutions,  which  would  result  in  the  same

structural  response  in  sensor  locations.  Measurement  noise,  inevitable  in  a  real

system, may increase the required number of sensors.
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Thus a restriction of the search in space and/or time can reduce both the number

of necessary sensors and the optimisation time. Moreover, the objective function

can be modified to include a measure of variation of identified force evolutions as

in [4]; this would significantly reduce the number of necessary sensors but make the

process heavily relying on the heuristic assumption of force smoothness: it would

identify the smoothest, but not necessarily the actual loading.

NUMERICAL EXAMPLE

Fig. 1 shows the modelled elastic truss structure. It is 4 m x 2 m; the elements

are 66 mm2 in cross-section, 0.5 m or 0.52 m long, and made of steel (7,800 kg/m3;

200 GPa). Strain sensors were located in the 32 diagonal elements of the bottom

plane. The left hand side corner nodes were deprived of all degrees of freedom,

while the right hand side corner nodes were free in horizontal directions only.

Simulated impact forces

The simulated loading modelled a vertical force moving along the numbered

nodes across the structure (Fig. 1), thus it was triangular in shape in each node, see

Fig. 2.  The  corresponding  strains  in  sensor  locations  have  been  calculated  and

stored to model the measurements εα
M t.

FIGURE 1 Elastic truss structure modelled in the numerical example
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FIGURE 2 Simulated loading model 
a vertical force moving along the nodes 1, 2, 3, 4

FIGURE 3 Impact forces identified in node 4
(respective optimisation time: 3 s, 10 s, 33 s, 108 s)
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Impact identification

An accurate identification has been performed: hm ,κ n , τ =1{n=m ,κ=τ }. There are 32

strain sensors, hence force evolutions in all 32 vertical DOFs of the top plane can be

simultaneously identified. The time interval  of 10 ms was divided into 100 time

steps, 300 optimisation steps were made. Fig. 3 shows as an example the identified

vertical force evolution in node 4 after 10, 30, 100 and 300 optimisation steps, the

respective optimisation times on a desktop PC were 3 s, 10 s, 33 s and 108 s.

CONCLUSIONS AND FURTHER WORK

A robust  methodology for impact load identification is described. It  includes

simultaneous multiple impact and moving load cases and  is based on local strain

and/or acceleration measurements, which can be stored in a  black box system for

reliable a posteriori reconstruction of accident scenario.

The research is ongoing to reduce the number of necessary sensors and verify

the described heuristics, investigate the issues of the best sensor locations and the

sensitivity to measurement noise. A corresponding algorithm for plate structures is

currently being tested and an experimental verification is prepared.
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